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ABSTRACT

A mathematical model of the range-gate pulloff electronic counter-

measure is developed based on a statistical model for the radar return from a

slowly fluctuating point target in the presence of white noise. It is shown

that the same model is also appropriate for describing velocity-gate pulloff.

An optimization problem is formulated which determines the jammer delay

inducing the maximum bias in the range estimation processor of the victim

radar. These results are then applied to the specific case in which the

transmitted signal is a gaussian pulse. The optimal delay and bias are

calculated as functions of the signal-to-jammer power ratio and the pulse

width of the transmitted signal.

RESUME

Un module mathdmatique de contre-mesure dlectronique par rdtablissement

des portes distance est 6labor6 A partir d'un module statistique applicable

aux 6chos radars provenant d'une cible ponctuelle qui fluctue lentement en

presence de bruit blanc. Ii est d~montr6 que le m~me module peut 6galement

d~crire le rdtablissement des portes vitesse. Un problMme d'optimisation est
formul6 pour determiner le retard du brouilleur introduisant un biais maximal

dans le calcul de la distance par le processeur du radar victime. Les
r~sultats sont ensuite appliques au cas particulier oa le signal transmis est

une impulsion gaussienne. Le delai maximum et le biais sont calcul~s en

fonction du rapport des puissances signal/brouilleur et de la dur~e

d'impulsion du signal transmis.
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1.0 INTRODUCTION

DREO has a continuing interest in simulating hypothetical engagements

between fighter aircraft and one or more surface-to-air missiles. One of the

aims in developing such simulations might be to discover whether overall

performance of the aircraft can be enhanced by providing it with an electronic

countermeasures (ECM) suite. In particular, two of the countermeasures which are
frequently encountered in the open literature [.] are range-gate and

velocity-gate pull-off. In this technical note we will propose a simple model

which can be used to describe either of these phenomena. We will then use this

model to derive some general "rules of thumb" regarding the possible performance

and response time of a hypothetical ECM system which uses these countermeasures.

2.0 BASIC RADAR MODEL

We shall first outline a statistical model for a slowly fluctuating point

target in the case of white bandpass noise. Since this model is described in
Chapter 9 of [2] in some detail, we shall dispense with derivations and formal
proofs, and restrict our presentation to a summary of the principal assumptions

and results. In particular, we will make the following basic assumptions:

(i) the aircraft can be modelled as a number of reflecting surfaces,
such that the return from each of these can be described as the
product of an independent complex gaussian random variable and a

time-varying (complex-valued) sinusoid. Moreover, we assume that

there are sufficiently many reflecting surfaces that the central

limit theorem can be applied to the sum of reflected signals;

(ii) the reflection process is linear and frequency-independent;

(iii) the change in time scale of the complex envelope due to non-zero

target velocity can be ignored (i.e. only the Doppler shift needs to

be considered);

(iv) all other stochastic variations in the radar returns can be modelled

as additive white bandpass noise.

Subject to these assumptions, we can derive the following mathematical

description of the received waveform in the presence of a moving target:

s(t) = / Re [r(t) exp (jwct)] (2.1)

where r(t) is defined by

r(t) = bs YE f(t- us ) exp (jws t) + n(t) (2.2)

5!I
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and the following notation and conventions al adopted:

(1) f(t) is the complex envelope of the transmitted signal

(2) wc is the carrier frequency

(3) Us is a delay proportional to target range

(4) ws is Doppler shift due to relative target velocity

(5) Es is the transmitted energy

(6) b. is a zero-mean complex gaussian random variable

(7) E(bsbs*) = 2 V2 (where the value of Vs depends on
antenna gains, path losses, target radar cross-section, etc., "*"

denotes complex conjugate, and E( ) indicates expected value).

(8) n(t) is an independent zero-mean white complex gaussian random
process

and

(9) E(n(t) n*(t)) = No 5 (t-s)

where we use the notation

n*(t) = (n(t))*.

Clearly we can work with either (2.1) or (2.2); for convenience, we will
usually use (2.2) in the remainder of this paper.

We shall restrict our attention to the case of transmission of a single
pulse. For this case, us and ws may be considered as constants; for
algebraic simplicity, we can in fact assume without loss of generality that

us = ws = 0 (2.3)

Hence we can rewrite (2.2) as

r(t) = b s  '%s f(t) + n(t) (2.4)

According to [l], Range-Gate Pulloff is a self-screening ECM technique
for use against pulsed, noncoherent, automatic range-tracking radars. The
victim radar's signal is received, amplified, and then retransmitted with a
minimum delay, in an attempt to provide a strong beacon signal which
captures" the victim's range-gate. The time delay in the repeated signal is
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then successively increased on a pulse-by-pulse basis, creating a series of
false targets. When the victim range-gate has been moved sufficiently far
away from the true target position, the ECM repeater is turned off, and the
victim radar will break its range track.

In the context of our radar model (2.4), we can describe the deception
pulse by adding an extra term consisting of a delayed and amplified version of
the complex envelope f. Since the deception pulse will in general be out of
phase with the transmitted signal, we will also include a random phase
factor. Indeed, without increasing the computational complexity, we can
generalize the random phase component to be a complex gaussian random
variable. Hence we obtain.

r(t) = bs ,'Es f(t) + bd ""Ed f(t-T) + n(t) (2.5)

where T is the delay in transmitting the deception pulse, and bd is anindependent, zero-mean complex gaussian random variable such that

E(bdbd*) = 2 V9 (2.6)

and

E(bdbd) = E(bsbs ) = E(bsbd*) = E(bdbs*) = 0 (2.7)

We can model the action of the radar receiver in estimating the true
value of the return signal as a time-invariant linear filter with impulse
response h(t). For the moment, we will only assume that h is an L2(R)
function (i.e. is square-integratable). We will be more specific as to other
properties of h later. Denoting the receiver output as (t), we obtain from
(2.5)

r(t) = bs v/s f(t) + bd /--Ed f(t-T) + n(t) (2.8)

where

f(t) = (f*h)(t) R f(u) h(t-u) du

f(t)= (n*h)(t)

Whether " " denotes complex conjugate or convolution will usually be obvious.

S . .

S..%'S2"
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Now, we define the expected power envelope of the filtered return signal
to be V

P(t;T) = E(r(t) i*(t)) = (bs /-Es f(t) + bd Ed f(t-T) + h(t)

x (bs,' s f(t) + bd "id f(t-T) + n(t))*

2V~s Es f(t)f*(t) + 2V Ed f(t-T)f*(t-T)

+ E(n(t)n*(t)) (2.9)

This last follows from (2.6), (2.7), and assumption (7) above. We now wish to

evaluate the last term in (2.9):

E(n(t)n*(t)) = E [. n(u) h(t-u) du][f n(s) h(t-s) ds]*
R R

= * J h(t-u) h*(t-s) E(n(u)n*(s)) duds
R R

- / h(t-s) f No 6(u-s) h*(t-u) du ds

R R (assumption (9))

= No f h(t-s) h*(t-s) ds

= No f h(s) h*(s) ds (translation invariance of
R Lebesque integral)

- No H h (2.10)

Substituting (2.10) into (2.9), we obtain

P(t;T) = 2V 2 Es f(t)f*(t) + 2V9 Ed f(t-T)f*(t-T) + N hl

(2.11)

As is pointed out in [3], we can model the estimation of range by the
tracking radar as a simple optimization problem. In effect, we claim that
those values of t at which P(t;T) attains local maximal will correspond to

estimates of target ranges. This models leading edge tracking In the sense
that it analyzes centroid biasing caused by the addition of the deception
pulse. We note in passing that this algorithm would not accurately model
tracking gates with sophisticated statistical signal processing or threshold
as well as differencing logic.

-.0 " - . . .. . . " ., . . . . . , . -.. .- . - ,-. - ... . ., .- .,-. , .' . . . ., . -, . . ,. , - , . . , . . - .- / . - . . . . . -
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We have not thus far committed ourselves to a choice of the receiver
impulse response h. If we wished to extend our analysis to include a more
complex estimation model, then a matched filter or a filter based on estimates
of the statistical properties of the interfering signals might be
appropriate. However, given that we are using the simple estimation model
described above, we will assume that the impulse response of the radar
receiver is (nearly) a delta function. In effect, this corresponds to a
receiver which estimates the target range based only on the return signal
without doing any signal processing.

Taking h as a delta function appears to conflict with our earlier assumption
that h L 2 (R). However, we will now show that there is a sequence of L2 (R)
functions, denoted dh(t), which "look like" delta functions for sufficiently
small values of h.

Let dh(t) be defined by

dh(t) = ( (2.12)

h h

where a(t) is any non-negative bounded continuous function with compact
support contained in the interval [-1,1]. Assume that the total mass of a is
1. Then following the same style of argument as is used in (4), Chapter 6, we
can show that for any function f-L 2 (R), (dh *f) converges to f both
pointwise and uniforrr in L 2 (R) as h 0. For consider:

(i 1()f(t-u) du- : f(t) a(u) du[2
j(dh *f)(t) -f(t) l f j( -u du

R R

1! a(s) f(t-hs) ds - f f(t) a(s) dsl"
R R
(using the change of variable s = u/h)

f i If(t-hs) - f(t)l a(s) ds] 2  (2.13)
R

[ f(t-hs) - f(t)1 2 a(s) ds][ a(s) ds]

a,.(by the Schwarz inequality)

al f: f(t-hs) - f(t) 12 ds]

R

a! ai w2 (f,h) (2.14)

5. 2 . ; ? ' . - ; 2 ' ) . ; ' ) -.-- ..--. --.---- i ' -- " ; ' ) -.. '- -- . ." - -< " - .i .- . . ' -' . -i ... v ' - , .. ? .
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where w(f,h) is the oscillation of f L2 (R), defined by

w(f,h) = sup ( f jf(t-s) - f(s)l 2 ds)i/2

andlall_ denotes the maximum value of a. We note from [4] that w(f,h)-O as
hX0. This proves that (dh *f) converges pointwise. Now, using (2.13) and

integrating both sides we obtain

.(dh *f)(t) - f(t) 2 dt = F f(t-hs) - f(t) 1 2 a(s) dtds
R R R

< w 2(f,h) f a(s) ds

R
(using definition of oscillation)

< w 2 (f,h) (2.15)

which proves convergence in L2 (R).

We are now in a position to state the problem we wish to consider: given

the model as described, choose the value of the deception delay T which
achieves the maximum range deception while maintaining (statistically)

non-resolvable signal and deception pulses. Intuitively this problem will
admit one or more solutions. Since we can assume that the signal envelope

f(t) has been designed to have only one maximum, very small values of T will
still generate only one maximum. On the other hand, very large values of T
will certainly result in a power envelope which resolves the return signal and

deception pulse as two distinct targets. Clearly, there must be some "happy

medium".

According to our model, the estimated target range(s) will correspond to

the maximum or maximal of the function P(t;T) defined in (2.11). Since the
last term in (2.11) is constant (depending only on the choice of the impulse
response of the receiver filter and the spectral height of the noise), we can

effectively disregard it. Moreover, we showed above that we can choose the
impulse response of our receiver filter so as to make the function f(t) as
close as we like (pointwise) to the function f(t), by choosing the parameter h
sufficiently small. This implies that the maximum of the function P(t;T)

defined by

P(t;T) = 2V2 Es f(t)f*(t) + 2V4 Ed f(t-T)f*(t-T) (2.16)

will also maximize P(t;T). It is this function we will work with in section

4.0.

64
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3.0 VELOCITY-GATE PULLOFF

As indicated in the introduction, we wish to extend our analysis to
include the velocity-gate pulloff ECM as well. As described in (1), this is
another self-screening ECM technique. The signal from the victim radar is
received, amplified coherently, and retransmitted to provide a strong beacon
which captures the velocity-gate of the radar. The Doppler frequency of the

deception signal is then moved away from the true target Doppler frequency at
a rate that does not exceed the victim radar's tracking capability. At some
point the ECM repeater is turned off, causing the radar to break track. It
should be noted that if velocity-gate pulloff is used in conjunction with
range-gate pulloff, the rate at whic the false range is changed must equal

the false vel- ity. Although it may be a subject of future research, the
analysis presented in this paper cannot be applied to simultaneous use of the

two countermeasures.

Referring to the basic equations (2.2) and (2.4) of the last section, we
see that a possible model for velocity-gate deception is given by

r(t) = bs s f(t) + bd "Ed f(t) exp (jwd t) + n(t) (3.1)

under the same assumptions as were posed in the last section.

Now, we will denote the Fourier transform of a function f(t) by F(jw) or

by F (f). Recalling that

(f(t) exp(jwdt)) = F(jw- jwd )

we obtain (formally) from (3.1)

R(jw) bs  Es F(jw) + bd ,-Ed F(jw - jwd ) + N(jw) (3.2)

Now, from (3.1) and Plancherel's Theorem, the energy in the return signal is

,E(r(t)r*(t)) dt = E(R(jw)R*(jw)) dw (3.3)

Of course, the left hand side of (3.3) will not converge; however, using

an argument similar to that of the previous section, we can overcome this
technical difficulty. Hence, if we define

04
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S(w) = E(R(jw)R*(Jw))

= 2V2 Es F(jw)F*(jw) + 2VJ Ed F(J(w-wd))F*(J(w-wd)) + No  (3.4)

then we can interpret S(w) as the expected spectral power density of the
return signal. Following the same line as was taken in the last section, we
now claim that those values of w at which S(w) attains local maximal will
correspond to estimates of target velocity. Since the constant term in (3.4)
due to the spectral height of the additive noise will not affect the position
of any maximum values, we can effectively ignore it. Consequently, the form
of (3.4) is identical to that of (2.16).

In the next section we will show how our model can be used to determine
the optimal bias for the range-gate problem, i.e. equation (2.16). However,
as we have shown, the results may equally be applied to the velocity-gate
problem, although we shall not explicitly do so in this paper.

* I4.0 DETERMINING OPTIMAL BIAS

In order to illustrate the utility of some of these ideas, let us assume
, ~that the transmitted signal is a gaussian pulse, i.e.

@)~11/4 -t
f(u) T-( exp (--2) (4.1)

S S

Thus from (2.16) we obtain

-- T 2V2  
1 ( I )1/2 -t2) + 2VJ Ed ( )1/2 exp( (t-T) 2 )-P(t;T) 2 E s  Texp(- + -

S

= Es exp(-t 2) + Ed exp(-(t-T)2) (4.2)
T2 T2

S S

Now, for each value of T, the value(s) of t which maximize P(t;T) must satisfy

r _P(t;T) zjEs exp z-t2 2(y-) Ed x(t-T2
Ts Ts Ts Ts(4.3)

Simplifying (4.3) we obtain

t exp(t 2 
- (t-T) 2 ) = expf 1 (2tT - T 2 )} (4.4)

T-t

Sp%
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where

(Es/Ed) =

We note that since the right-hand side of (4.4) is always strictly
positive, and since we can assume without loss of generality that t 0 , we
must have

T-t 0 or t , T (4.5)

Let us designate the value of t at which a local maximum occurs by t*.
Then in order to guarantee that t* satisfying (4.4) is a local maximum (rather
than a local minimum), we impose the further necessary condition

P (t;T) )
tt=t *

2 exp(-t . 2 ) [-E + 2E t. 2  exp __+_ 2E t - E x t*- -(t*- ),r

T 'T_ T,' (4.6)
S S S S S

+ 2 E d (t*-T)- exp , t - (t0-T)1 ] •
T2' T 2  T2

, S S

Substituting (4.4) into (4.6) and simplying, we obtain

2E exp(-t* 2 ) [-1 + 2t* 2 -t* + 2(T-t*)t*] • 0

-- T T T Y_-t* _
s s S

2E exp(-t* 2) [ -T + 2Tt*] 0 (4.7)

Since the leading factor in (4.7) is already strictly positive, it is
clear that the sign of the left-hand side in (4.7) depends only on the
expression in square brackets. Moreover, since T is a delay, we can also
assume that T , 0, resulting in the following condition which is equivalent to
(4.7):

-l + 2t* 0 (4.8)
T-t* Ts

0Z-
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2t* 2 - 2t*T + T2 > 0 (4.9)

where we have used (4.5) in (4.8) and simplified. We note that for
(T/Ts ) < /-2-, then (4.9) will be true for all t*a[O,T]. Hence, for all
choices of T such that (T/Ts) < /2, we are quaranteed there will be a single
local maximum, hence t* will designate a global maximum. We can interpret
this as meaning that only one target will be resolved by the victim radar.
However, it is unclear how much larger T can be chosen such that the radar
will continue to resolve only one target. This obviously will depend on the
actual value(s) of t* which solve (4.4), which will in turn depend on the
power ratio" (Es/Ed), and on the "pulse width" Ts .

Now, in order to resolve two peaks, there must be some value of T which
yields a "flat spot", i.e., a pair (t*,T) such that

* )P(t*,T) =_' 2p(t*,T) - 0

From (4.4) and (4.9), this gives the pair of equations,

2t* 2 - 2t*T + T2 = 0 (4.10)

and

t* = exp 1_ (2t*T - T2 ) (4.11)IaT-t* T

To simplify the solution of this pair of equations, we introduce a
trick" based on (4.5). Since we know that t* < T, there is a number F

* (possibly depending on T) such that

0 1 and FT - t* (4.12)

Substituting (4.12) into (4.10) we obtain

2 2T 2 
- 2.T2 + T 2 =0

= r (4.13)

21
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Substituting (4.12) into (4.11) yields

" exp { (2T 2 /T 2 )( : - l)} (4.14),. (1-F)

Now combining (4.13) and (4.14) gives

= -'exp (Fi ~)(4.15)
- '7(1 -7)

Hence for a given value of a, we can solve for F = g91 (c) in
(4.15), and then use (4.13) to find the value of T, say Tr(a), at which
targets will be resolved. Figure 1 shows a graph of gl; we note that
g 1l 0) is defined and one-to-one for all x > 0.

However, what we are seeking is not necessarily Tr(), but rather the
value of T (less than or equal to Tr (a)) which gives rise to a single
target with the largest "bias" value t*. In order to find a necessary
condition which defines these values of T and t*, let us differentiate (4.4)
implicitly with respect to T:

t, - at* (l-t) = 1 (2t'T + 2t* - 2T) exp{ 4 (2t*T -T2 )} (4.16)
T-t* - W Ts

where t = d t*(T). Substituting (4.4) into (4.16) yields
dT

a tT - at* = 2_rtT + t* - Ta t*.

(T-t*)2  T2 f i5 -t*

t fT - 2Tt* (T-t*)} = t*{l - 2 (T-t*) 2} (4.17)
z- Y

Hence, we deduce that

d t*(T) = t*Al - (2/T2)(T-t*)2 1 (4.18)

[T - 2 T t*(T-t*)]

To find a (local) maximum, we let d t*(T) = 0 in (4.18), obtaining

(T

t*= 0 or 1- (2/T2)(T-t*)
2 = 0

N..........................................'....,.."."..-."....-.-....--"....,.,,,.....,.,.,.
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Since we have assumed that t* 0, we are left with

T - t = Ts/,,2 (4.19)

Now, combining (4.19) with the basic equation (4.4) yields

.- v'2 t* = exp {(t*/Ts) 2 
- 1

Ts  2

1 = i (Ts ) exp { (t*/Ts)2 - i} - g2(t*) (4.20)

, 2 -2T s

For any value of -, 1, there are two numbers t* such that
t* = g1l (a), as shown in Figure 2. For each of these (4.19) can be used
to calculate corresponding values of T, say T*(C.) and TW(c), such that T*<T*.

However, as shown in Figure 3, T*(1 ) is actually greater than TrGa),
i.e., if T = T*(,) then two targets will be resolved. Hence we only use that
portion of g2 to the left of the dotted line in Figure 2 to find t*.

If -x < 1, then by inspection there is no solution for (4.20), and hence no
value of T such that d t*(T) = 0. Referring to (4.18), if we assume that

__s, we have dT

?

t*{l- ( 2 ) (T-t*) 2} t*l- ( 2 ) T2} 0 (4.21)

and

T 2 T t*(Tt*). T 1l 2 T2 1 0 (4.22)

recalling that 0- t* - T. Hence,

d t*(T) 0 for T -[0, Ts  ] (4.23)
dT ¢2

.

04
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Now if 1, since d t*(T) 0, we can in fact deduce that

d t*(T) 0 for T [0, Tr ()], 1 (4.24)

and hence the value of T which maximizes t*(T) is Tr )

We will make one more observation before presenting a complete solution.

Recall that Tr( ) for the case I 1 can be found by solving (4.13) and
(4.15), that is,

(1-) = I (Ts/Tr)2  (4.25)

exp

1 (I- ) exp ('-:) (4.26)

Now, let = and s = 1- in (4.25) and (4.26), to obtain the pair of

equations

(l-s)s = I (Ts/Tr)2 (4.27)

and

= gl (S) (4.28)

But 1, hence (4.27) and (4.28) are solved by Tr ( ) = Tr ( )

Tr(1/ ) from our ,r,'. ,'1 work.

@4
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Now, in order to find the bias t* induced by the delay Tr(ct ), we need
to solve equation (4.14) with T = TrQ~ ) We note that there must be two
values of I- which solve (4.14), i.e. 91 g 1 (a ), which corresponds to
the "flat spot" which defines Tr( a), and the value of 1p which corresponds
to the maximum bias t*. Define the function g3 by

= -I'exp 2(Tr/Ts)2  (7-9 3(Tr;F') (4.29)

* and define g4( ~)by

g4( -6 = 3(Tr( t)I ) 1 G"' (4.30)

* Then 94 is defined and single-valued for all a) <1. Figure 4 shows a graph

* Of g3 for representative values of (Tn/T5 ) superimposed on a graph of

- gl. Figure 5 shows a graph of g4,

Hence from (4.12) we conclude

t* = g4( 0 TrO' 9 40~ ) Tr(lfax) (4.31)

We have now obtained a complete solution for the Droblem of choosing a
delay so as to maximize the bias induced in a victim radar. The solution
divides naturally into two cases:

(i) =Es/Ed .1 Optimal bias = topt = Ts g~l(

Optimal delay = Topt = top + T/'2

= TS (g '1 U) + F(4.32)

*.(ii) = S/Ed - 1 Optimal delay =Topt =1 Ts 1 11/2

Vwhere =gjl (0or =~~/,

Optimal bias t ot0 ~ = (, Topt
.,

Graphs of the solutions (Topt/Ts) and (topt/Ts) are showsn in Figure 6.

.4,.'.
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6.0 CONCLUSIONS
I l -

We set out to derive some basic "rules of thumb" regarding the possible
performance and response time of a hypothetical ECM system which used the
range-gate (or velocity-gate) pulloff countermeasure. Our analysis has been
based on a standard statistical model for the radar return from a slowly
fluctuating point target in the presence of white noise. Using our model,
which also included a deception signal representing the range-gate pulloff
ECM, we derived an expression for the expected power envelope of the filtered
combined signal. We saw that target locations could be identified as local
maximum of this power envelope. Moreover, we showed that the same basic model
was also appropriate for the analysis of velocity-gate pulloff.

We then explored our model in more detail for the specific case in which
the transmitted signal could be represented by a gaussian pulse. We saw that
small deception delays resulted in biased estimates of target position;
however, as the delay was increased, a threshold was reached beyond which the
victim radar could resolve the jammer as a separate target. Now, in order for
the countermeasure to be successful, one must be able to move the apparent
target position sufficiently far from the true position that the victim radar
cannot keep both the true and biased positions within its range-gate. As one
might have expected, the determining factors as to whether this can be
accomplished appear to be the pulse width of the transmitted signal, and the
signal-to-jammer power ratio (calculated at the receiver).

A number of possibilities exist for extending or enhancing this model.

For example, at the moment the additive deception signal is restricted to an

amplified and delayed version of the signal transmitted by the radar. One
could allow a more general type of deception, such as one which included

*variations in the pulse width. Indeed, one could go so far as to consider an
adaptive jammer which constructs a jamming signal (based on the measured

.' transmitted waveform) designed to induce the maximum deception in the victim
radar. Needless to say, we suspect this problem would prove to be very
difficult. Another direction might be to attempt a simultaneous solution of
the range-gate and velocity-gate problems; reformulating the model in terms of
the ambiguity function would be a possible approach. One might also wish to
add a more realistic description of the dynamics of the victim radar, or

*- include a model of the observer needed by the ECM system to measure the
parameters of the transmitted signal.

We caution the reader once again that this paper is aimed primarily at
those who want to do a "top level" analysis of the effectiveness of the

* range-gate pulloff ECM, particularly simulation designers. We should also
point out that there are some obvious limitations which must be considered
before applying these results to specific problems. For example, this model
would certainly not be an appropriate one for describing a tracking gate which I
used sophisticated signal processing. Also, it is important to bear in mind
that this model describes signals by their statistical averages; consequently,
one should not attempt to draw conclusions about the pulse-by-pulse behaviour
of such systems from this analysis. However, used carefully in the context
for wich it was intended, we believe that our model can provide a useful tool

for the FW systems analyst.

A. r1 t
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APPENDIX A

COMPUTER 1 OGRAMS

The numerical results used in this paper (which appear primarily In the

graphs) were generated by programs written in the APL programming language

using a DEC-2020 minicomputer. In this appendix we will briefly describe each

of these programs; these descriptions will be followed by a comprehensive

listing.

(a) CHANGE: CHANGE accepts a boolean vector (i.e. one consisting of
O's and l's), which we will denote by (a1 , a 2 ,....an), as

an argument. It returns a vector of indices i corresponding to
those ai which satisfy ai A ai- I .

(b) INV: INV is an infix function which takes as its first argument

the name of the function to be inverted. The second argument is
a three element array composed of the value at which the inverse

function is to be evaluated followed by the interval over which

the inverse is to be calculated. That is,

f INV (x,a,b) = f-(x) for x f([a,b])

= for x Vf([a,b)

Note that f-1(x) may be set-valued. The basic algorithm used

to compute the inverse function is quite simple. The interval
[a,b] is subdivided into a number of intervals [ai, b1l, and

the program checks to see if x~f([ai, bl]). If it is, the
process is repeated until the size of the subinterval(s) is less

than a pre-selected tolerance.

(c) G1 : G1 is the function defined by (4.15), i.e.

gl ( )  = 1-: exp ( - 1;
• J 1-

Since gl has asymptotes at 0 and 1, traps are set to catch

these values.

(d) G2: G2 is the function defined by (4.20), i.e.

9 2 (x ) = i e x p x 2 - 1

Since g2 has an asymptote at 0, a trap is set to catch small
values of x.

5.
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(e) G3: G3 is an infix representation of the function defined by
(4.29), i.e.

(Tr/Ts) G3 = g3 (Tr;$ )

where

g3(Tr; F) = l- exp {2(Tr/Ts)2 (F - I)}
2

.j- Note that the asymptote at 0 is trapped.

(f) G4: G4 is the function defined by (4.30), i.e.

g4 (r) = { :)' = g3(Tr( );.), # g i (F)}

G4 can accept vector-valued arguments; however, since G4 works by

-* - invoking INV, the input vector is disassembled, the inverse is

calculated for each scalar that results, and the answer is
assembled into an output vector. Note that any function which
invokes INV is accompanied by a SUSPEND block which returns
control to the user if INV returns the empty set or multiple
values. Often this happens because of numerical considerations
even when the inverse function exists and is single-valued.
Rather than provide complicated code to deal with such problems,
it is easier when using an interpreter like APL to return control

to the user and let him sort out the difficulty.

(g) SOLUTION: SOLUTION finds the values of To t and t^pt (as
defined by (4.32)) which correspond to various values of

t(Es/Ed) ranging from -50 to 50 dB. LOOPA solves part (i) of
"t.-. (4.32), and LOOPB solves part (ii). Note the presence of the

SUSPEND block once again since INV is invoked frequently.

t..°&
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V INDEX-CHANGE MASK;I;J;SAVEMASA;FLAG
Ell A

[2] A MASK IS A VECTOR OF O'S AND I'S
[3] A CHANGE FINDS INDICES CONTAINING VALUES WHICH
[41] A DIFFER FROM PRECEDING VALUE
[5] A

[6] INDEX+10;MASK4-MASK,0;J-0;FLAG-0;SAVEMASK-MASK:

-[8] INDEX-INDEX,I+J+1l+INDEX
,9] -(0=PMASK-(J-MASKl0)+MASK)/EXIT

[10] -LOOP

2 [12] J-;INDEX*10;SAVEIN-INDEX;MAS-(-SAVEMASK),Q;ELAG-1
[13] -LOOP

[14] FINISH :INDEX.I0xINDEX)/INDEX-SAVEIN ,INDEX

[16] G
V

*L18

'al
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v'7--FNCINV V'ALUE ;L"EFT;RIGH2 ;UA,,;X;Y ;MASA ;INDEX ;OK ;NOTOK

[21 INV IDSIVES FUNCT ION FOE F'JNC EVA ,'A TEL.
[r3] A T -F lST ELEMENT" OF ARAAY VALSUE. SEC ON[ AND
L] TSA [ ELEAEN'.TS OF VALUEF DEFINL INTEAVAL
[5] p OF ITNTERE-ST'

[7j H~ TiO SEE IF VALUE IS LEGA.L FORMAT
[8]
19] o'(VALUE) 3)/IERROR

1 111 DEFINE LEFT AND RIG;HT ENDPOINTS
L 12]
[ 13] T-i0;LEFT-1t1+VAL'UE;RlG3HT+14t2VAUE;UN-( (i101)*101),l;LO4J-0
[14f] YLOOP :X'-iO
[15 1 p
[16] 1 DEFTiNE X VECTOR; NOTE RIGHT, LEFT MAY BE VECTORS
[17] 1

o [18] XLOOP:X4-X, (1tLEFT)+UNx( (1±RIGHT)-(1+LEFT))
L[19]1 LEFT-1+LEFT;RIGHT*1+RIGHT
r20] -((PLEFT)>0)/XLOOP
E [21] Y-EFUhC,' XV

E23] A USE CHANGE TO FIND INTERVALS WHOSE IMAGES
[241] A CONTAIN FUNC(1t VALUE)
[25] 1
126] INDEX-CHANGE MASK-(1+VALUE)5Y
[2 7]
[28] A DEFINE NEW LEFT,RIGHT VECTORS;CHECK
[29] A SIZE OF NEW INTERVALS AGAINST TOLERANCE

[31] RI 'ii--XINDEX];LEFTi-X[ 1+INDEX]

[32] OK TOLERAN('E>I1-/0(2,(pRIGHT))P(RIGHT,LEFT)
[33] T-T,X[OK/INDEX]
[34] NOTOk-(>OK)/i(PRIGHT)
[35] RIGHT-RIGHT[NOTOK];LEFT-LEFT[NOTOKI
L361 -*i<PRIGHT)/YLOOP

[38] hO:- WRONG FORMAT FOR INPUT'

04
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V T-Gl j ;INDEX ;MASk ;SIZE

[2] A IMPLEMENTS FUNCTION GI
[3] A INCLUDES TRAPS FOR UNDEFINED VALUES NEAR 0 AND 1

[5] INDEX-(-MAS--( (LOWLF~-G0.O1)+(UPPE5-G C.99) ))/i'57Z-o~G-,G
[6] G*G[INDEX]
[7] T-(-MASK)'\ ((1 -0) *6) x *( 1 +2j ) ( 2 xG l(1-6))

[81 '[(UPPER)/iSI1ZE]--1.00E1l0
[9] ILLOWER/tSIZE>-0

V T4-G 2 X ;INDEX ;MASK ;SIZE
E [iI A

[2] A IMPLEMENTS FUNCTION G2
1 3] A INCLUDES TRAPS FOR UINDEFINED VALUE NEAF 0
E4] A AND FLOATING POINT OVERFLuw
, LS] A

[6] iNDEX-('-MASA-( (X: .0E 10) +(X 5) ) )iSZA-"- X*,X

18] T-(-MASA)\(*( O.S+XxX))*(Xx2*0.S)

V T--BFfA G3 G;INDEX;MASK;SIZE;U'1;ZERO
[] A

[2] A IMPLEMENTS FUNCTION G3; BETA =TR/TS
[3] A TRAPS 0 VALUES AND USES ASYMPTOTIC
[4] A APPROXIMATION NEAR 0

[6] INDEX4-(-MASK--G0.0001)/SIZE-PG-,G
[7] G1*G[INDEX]
[8] T.-(-~MASK)\( (1-G1) *G1)x*(-1+2xGl) xBETAxBETA
[9] MASK--MASKx"-ZERO4-G!50
[10] T[INDEX>-(1*G[INDEX4-MASKISIZE])x*BETAxBETA

-[ill T[ZERO/iSIZEl-1.00E30
v

-p-e-



A-

IMkP L EME N TS FU N CT!O 270
*A _' ;-B.A MAY E V EJT, bf 9EEI T S

INvV 7: SA S SEMELb A &

8] IIS INVEAT G61 T' TI. SA VE G

A 1f] LO3P:-;(O.ALAh.- 1,A3 1 )'

L 141 G f

13 QFT'T 3' INV(A,0,1)

L 22 ThAO'W AWAY ANY VALUES; EQ UAL G
L23~ A

' 24] O2T:T-T ,GCRIT)/1CEI7
* ~A -LOOP

27] A lET hE--RE IF IN V RETUR NS- EMPTY SET OCF MV TZFL VA LUE
2 8] A
Lz 9 EN L: -A; 'NO0 SG6L ~TON F0 a 'Ph x h~ *E(A HA,, 5F h NV4'ETING ,FHIALT

* 3-, -'A3SlGN' INVERSE FOE. '.FBALT. TO VAIB~~ 7A[TF )'TE
FL3 1 COMMANL:JOM-2 M'HALT >

3.~ .2] jJ'M?-c'CONT',j1+FHALT
3c~ [3] -~x/'CONTINUE' =ACQM-8p(COM-(( xOOM) 1_'M9.~

':: 96] -COMMAND



I'..., - A-7

'7' j:0, ;A ;LH C7TAFATCMJ1W;RCOM!

S"-TO 1tLUASOTML DELAY AN[ BIA3 VAtr.
r ~ ~ ~ !.J - : 5 AG-GATE PUILLOFF PEObLYM

j E F'E U 5SGA

41 tiP4 i. I 10 0~ 1x (. '.U
7 

A, . 1'

T. 5Sb- j

.4. . , 4 < : I 1 TIME AH O3 1CO

A A ' T - G

-(4G A)xTlR),TSTAR

* . ~'~.A>F~F~Y10 TIMES THROUGH LOOP

cl bx................).4AFRNi EMPTY SET OR MULTIPLE VALUES
- - . .. > .i,4.7K. OF QUIT TO GET OUT

- -~A M AITEL INVERTING ',FHALT
'J : '4 F V Si INL; FOR ot

N. -. A*VA.:i:;N F/ it ',FHALT,' TO VARIABLE CRIT AND TYPE CONTINUE'

*~ 2/I?,I fFHALT
4,()N~' !NNT.UF f RC)M-.8 IDCOM-(p 'XCOM)/COM)),8p' ')/JIJMP

- .4.R (7 J4 Af R l0

4f9f A

A. -< AIMAJ



-31-

'I [NCTASS IF 14D

DEPARTMENT OF NATIONAL DEFENCE UNCLASSIFIED
DEFENCE RESEARCH ESTABLISHMENT OTTAWA
SHIRLEY BAY, OTTAWA, ONTARIO KIA 0Z4 CANADA

A MAT"IllEA\T I CAL MODEL FOR RANGE-GATE Pi LLOFF (U)

DREO TECHN'ICAL NOTE__

BARRY, BRIAN M.

1111111 )Alt 7a TOTAL NO RrPGS l O O EFS
NOVEMBER I98 ) 33 4 ___

tIj PRQJECt OH GPANT NO 91 ORIGINATOR S DOCUMENT NUMbEIS1

) 11KB T N 86-22

C-,II A TU 9t) OTHER DOC.IF~NT NI I (Any )Ih,. h sfj -a, h,

II I TATE%,'IJ T

loT hi t, d 1)is tr ihu t ion

%)TE I,'SPONSORING ACTIVITY

()A maithimatical model of the range-gate pulloff electronic countermeasure
is devuloped hased on a statistical model for the radar return from a slowly

IfIuc tuit in~i, point target in the presence of white noise. It is shown that 'the
samt. modcl, is- also appropriate for de~cri hing velocity-gate nulloff. An

ptmiat ion problem is formulated which determines theja erdlyiucnopti iz, amme del y in uciItihl maximum bias in the range estimation processor of the victim radar. 'Theseresults are tlien applied to the specific case in which the transmitted signalIs as pulse. The opt imal delay and bias are calculated as funct ionsof tht_ si~ri-to-Vxmmer power ratio and the pulse width of the transmitted

signal1.

%,'



I"

%"'1 -32-

UNCLASSIFIED---

KEY YORDS

Electronic Countermeasures

ECM
Simulation
Radar
Mathematical Modelling

"' Range Gate Pulloff
RGPO

-J.-

INSTRUCTIONS

A,,u 1 , r Y , , , n j1 I, s I h, 0 T H E,, r)0 U lDuT I fNTT tE'' %1 T't '.E"f"I I' "

(or t"Il .$$- l"I he lr .1... I,I lb.h ,."r',)s'

- 2 . IC , ...... T S ..1 (7 . , ' C l I' . ., 7 ... S I %r ')' o,

,I Th'"P .1 '.TA I' - -"I.F 111 "C I'tl ''I'

%

'-" " ~lIed E+.M p..f.l'.. a
1  

the d 'II¢ I Lal sr ,jI 1i l.,t .i*lw I; C CL MI%' NT 0 ATE Enle' 5114' O{ily II'I.' 4  P ' $'
l ¢  

-"!Id'C.1lIlf CI lb.' S " t.,lV (I II.ms + llO.' ol Ih f {e ~ fcl

" '. ElFr!)' SlhI'Pnl ,lIIVIOvJI 101 pahbl',.41)fl 01I Ih. ,I', j"""' *l' 141, p.1ir3913l0' IUIII'1S the doCunnfl| tiePlI '$ jl Un IIf',I',lII

*.'l.,,.s.'nl.'d aS I TS. (SI (c. " I O. (U1a ~ i TC I TL. NUNIO[}{ 0 PAGE S Th hb.' 1,1131 )0 4 C3'' U1, 100'
.1111i0g., n 1'.44 iJlgafalon 0'P P{ oc ' ,, , ' e, .'nlvr III, n, ,n TI,. l41,n914 Of lhI,' JhStrl 14e ll 414b Ihn,¢P4 10 20 Ilnqi,u.,cs'.I.

CI " + Ii [lq , 0.'lI.4II1.nI [ ' tO' '.On l~ ,, . . ,+ ,+1 Iall l}es Ite I .. i(' m~ , IAlp-ne t i .. 4 ,,, .. g 'd

p.p

.

tv,'

'1 11' ,p m,'., , n't", su l -,1 of th tjl m 0 nev - trouq 't, I~t,]'I

h, .. + ,, - , nk T h , - e I, th e "I 'I "' 'e 1, hS

't ew boIt at! e Ill C Of*'% 1C Il%'I -



-S

4%

4.
.4

t~m _ i?7
.1

4%.
-S

4-S

4.

6


